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A specific conformational microstate of a doped polymer (poly(methacrylic acid)) is optically labelled by 
burning a narrow spectral hole into the absorption of the dopand molecule. The hole is then used in thermal 
cycling experiments as a highly sensitive probe for thermally induced structural relaxation processes. The 
temperature range investigated covers more than two orders of magnitude, namely from 520 mK to 60 K. 
Even at extremely low temperatures the polymer undergoes thermally activated relaxation processes as 
detected via the recovery and broadening of the hole. The relaxation pattern as a function of temperature can 
be modelled in a quantitative fashion. It is shown that the probability distribution of the conformational 
barriers is ~ 1/x/V. It seems that there is no lower cut-off barrier and that the distribution diverges for V~0. 
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I N T R O D U C T I O N  

Many features of the physics of polymers are an outcome 
of their non-ergodicity. Upon  solidification from the melt, 
the polymer is trapped in a special conformational state 
from which it cannot easily escape on short timescales 1'2. 
Since this conformational state is, as a rule, not a global 
minimum of the free energy, but rather a local one, 
relaxation processes are going on, and the polymer starts 
to explore the phase space around the special 
conformational state in which it has been trapped, as time 
goes on or as temperature or some other parameters are 
changed. Usually these relaxation processes have a rather 
local character in the sense that it is only a rather small 
number  of atoms which change their places. Owing to the 
local character and because the free energy varies 
markedly for amorphous solids, we expect a broad 
distribution of structural relaxation rates similar to that 
in small-molecule organic glasses. This distribution may 
extend over almost 20 orders of magnitude, reaching from 
microseconds to thousands of years 3. The structural 
relaxation rates, no matter  whether they are due to 
tunnelling or activated relaxation processes, are mainly 
determined by the height of the barrier that separates the 
interacting conformational substrates in phase space. 
Information on the distribution of relaxation rates is a 
prerequisite to understanding ageing processes of 
polymers. To understand ageing of polymers is 
technologically very important  with respect to many 
aspects of polymer application. Just one example in this 
context is the optical data storage for which polymers 
seem to be of increasing importance 4. 

Spectral hole burning offers an excellent technique to 
measure structural relaxation processes as a function of 
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either time or temperature. The method is highly accurate 
owing to the sharpness of spectral holes at low 
temperature 5. It has been shown that relaxation as a 
function of time occurs in a logarithmic fashion. The 
bounds of the rate distribution could be determined for 
many glassy solids and could be shown to cover many 
orders of magnitude 3'6. Very recently we succeeded in 
modelling thermally irreversible features of the recovery 
of optical holes due to structural relaxation processes 7'8. 
This was possible by introducing a freezing (or melting) 
condition for the locally relaxing group into the dynamic 
models for hole relaxation 9. 

E X P E R I M E N T A L  

The technique of spectral hole burning has been described 
in a series of papers (for example see ref. 5). Briefly, 
narrow-bandwidth laser light is irradiated into the broad- 
band absorption of a photoreactive dye molecule doped 
into an amorphous matrix frozen to cryogenic 
temperatures. Light absorption leads to a frequency- 
selective bleaching of the excited dye molecules and, 
hence, a hole appears in the spectrum. At low 
temperatures the hole may be extremely narrow, i.e. 
several orders of magnitude narrower than the broad 
inhomogeneous width. The contours of the hole are 
roughly determined by the homogeneous lineshape 
function. In order to use the hole as a probe for structural 
relaxation, temperature cycling experiments are most 
straightforward. In such an experiment I 0, the principle of 
which is sketched in Figure 1, a hole is burnt at the lowest 
accessible temperature. We call this temperature the 
burning temperature Tb. In our case Tb was 520 m K  and 
4 K. After burning, the temperature of the sample is raised 
to some value T, which we call the excursion temperature, 
and is immediately cycled back to Tb again. Here, the 
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Figure 1 (a) The system investigated: quinizarin-doped 
poly(methacrylic acid) (PMAA). (b) Sketch of the basic idea of a 
temperature cycling hole burning experiment. The hole is burnt at Tb, 
usually the lowest accessible temperature. Then the area and the width 
of the hole as a function of excursion temperature are measured. The 
filled circles represent the system whose properties are always measured 
at the same temperature, namely Tb 

changes  tha t  the hole suffered th rough  the cycle by  the 
s t ructura l  re laxa t ion  processes being induced  are  
measured .  There  are  three interest ing quant i t ies .  These 
are the shape,  the area  and the width  of the hole. The  
shape usual ly  does  no t  change;  it remains  Loren tz ian  
when it was Loren tz ian  before the cycle 9. However ,  the  
a rea  and the width  do  change  v'8. No te  tha t  it is only the 
cycling t empera tu re  tha t  is varied.  The  hole is a lways  
measured  at  the same tempera tu re ,  namely  Tb. F o r  
t empera tu res  be low 4 K we used a 3He-type cryosta t .  F o r  
higher  t empera tu res  a 4He-flow-type cryos ta t  was used. 
The  da t a  sets ob ta ined  f rom two exper iments  with 
different c ryos ta ts  were jo ined  in the p rope r  way,  so tha t  
the whole  da t a  set refers to a burn ing  t empera tu re  of 
520 mK.  The  accuracy  of the t empera tu re  was + 0.01 K 
below 4 K and  + 0.1 K above.  The  t ime r needed for a 
cycle was between a few minutes  and an hour .  The  results  
did  not  depend  in a measu rab le  way on this t ime. Hole  
burn ing  was per formed  with a pulsed dye laser.  P o w e r  
levels and  burn ing  t imes at  4 K were of the o rde r  of 
400/~J c m -  2 pe r  pulse,  30 H z  and 5 min,  respectively.  W e  
stress tha t  burn ing  at  520 m K  is very crit ical as far as the 
power  level is concerned.  Min ima l  heat ing due to l ight  
abso rp t ion  m a y  lead to  e r roneous  results.  W e  reduced the 
power  level to 40 ffW c m -  2 by  using a con t inuous -wave  
(CW) Ar  ÷ laser  and  extended the burn ing  t imes to 
60 min.  The  holes were measured  with a h igh-reso lu t ion  
spec t rometer  (0.25 c m -  ' ) .  W e  note  that  the holes  are,  to a 
cer tain amoun t ,  sa tura ted ,  and  hence do  not  reflect the 
homogeneous  line 11. This  is, however ,  of no concern ,  
since we are  only interested in the change  due to 
t empera tu re  cycles. The  holes were fitted to a Lorentz ian .  
F r o m  that  fit the change  in a rea  and width  was 
de te rmined .  A Loren tz ian  was in any case a ra ther  g o o d  
fit despi te  the sa tu ra t ion  b roaden ing .  

As a model  system of  dye -doped  a m o r p h o u s  matr ix ,  we 
t ook  po ly(methacry l ic  acid) ( P M A A )  d o p e d  with  
quinizar in  (Figure la). Samples  were p repa red  in a s imilar  
way as has been descr ibed in ref. 11. Concen t r a t i on  and  
thickness  were 1 0 - 3 m o l / k g  p o l y m e r  and  0 . 5 m m ,  
respectively. 

R E S U L T S  

The t empera tu re  range inves t iga ted  covers  more  than  two 
orders  of magn i tude ,  namely  f rom 5 2 0 m K  to 60 K.  
Figure 2 shows the recovery of  the hole  (i.e. the  relat ive 
area)  as a funct ion of  excursion tempera ture .  In  the whole  
range the d a t a  can be  fitted to a t empera tu re  law of the  
form 7: 

A/A o = 1 - x/(T/T*) 

with T* being of  the o rde r  of 100 K. N o t e  tha t  the hole 
recovers even at  t empera tu res  as low as 520 m K .  The  
abso rp t ion  of the sample  is shown in the inset.  The  a r row 
marks  the pos i t ion  where hole burn ing  was done  
(5145 A). 

In  Figure 3, the change  in hole wid th  (A~oir) as  a 
funct ion of  excursion t empera tu re  is shown. The  da t a  can,  
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Figure 2 The relative hole area A/A o as a function of excursion 
temperature. A o is the extrapolated area to temperature zero. The two 
inserts show the absorption spectrum with the hole burning position 
marked, and the distribution function of barrier heights as obtained 
from the data. The latter follows a 1/~V law. Broken lines mark the 
limits of the experimentally probed range 
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Figure 3 Thermally irreversible line broadening as a function of 
excursion temperature. The data are plotted with respect to a burning 
temperature of 520 mK. The shape of the hole at 520 mK is shown in the 
insert 
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in the whole range, be fitted to a temperature law of the 
form 9: 

Afoir = a T 3/2 

Note that, whereas the hole area decays rather rapidly in 
the temperature range from 520mK to 2 .5K,  the 
broadening is extremely slow. This behaviour reflects the 
fact that both processes are decoupled. The insert shows a 
trace of the hole at 520 m K  before any temperature cycle 
was performed. 

D I S C U S S I O N  

The two-level system (TLS) model for low-temperature 
polymers 

In this section we give a brief outline on how we model 
structural relaxation processes of amorphous  polymers as 
measured by a temperature cycling experiment. Our 
approach is based on the so-called TLS model developed 
to account for the anomalous thermal properties 12 of 
these materials and recently very often used to model also 
optical features 3,5. Figure 4a shows a schematic view of a 
cut through the phase space of an amorphous  polymer. 
The free energy along this cut is a random function. The 
simplest element of this random function which still 
allows for structural relaxation is a double well. In the 
physics of glasses such a double well is called a TLS (two- 
level system). It is a special feature of amorphous  solids 
that the parameters of a TLS are widely distributed. 
These parameters are, for instance, the barrier V and the 
energy splitting E. Since amorphous solids are, as a rule, 

characterized by a sharply structured radial pair 
distribution function ~ on short length scales, for the 
moment  we do not assume that d is distributed, too. 
Owing to the distribution of these parameters,  the 
structural relaxation rates are distributed, too 13. Since 
structural relaxation, no matter  whether it is due to a 
tunnelling or an activated process, depends in an 
exponential fashion on V, the distribution of rates is 
incredibly broad,  as mentioned above. Relaxation in a 
double well can be viewed as a structural rearrangement 
of a local group of atoms. Within the frame of the model 
we assume that these rearrangements are independent of 
each other. This is equivalent to a mean-field ansatz. A 
conformational microstate of the whole polymer is given 
by a definite occupation of the whole ensemble of TLS. 
There are several important features of the TLS model in 
its usual form: namely, that only the two lowest states in a 
double well are considered to be important  (hence the 
name two-level system), that relaxation occurs only by 
tunnelling processes and that the relevant parameters E 
and 2 are roughly uniformly distributed12. The parameter  
2 is called the tunnelling parameter  and is a function of the 
barrier height V, the length d and the mass m of the 
tunnelling particle, according to: 

~ = ( m V d 2 ~ l / 2  
\2h2 j (i) 

In the following we will modify this model in the sense 
that we allow for activated processes as well, and that the 
relevant distribution is the distribution of V instead of 2. 
The important difference is that a distribution in Vcan be 
directly measured 7 whereas a distribution in 2 cannot. 
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Figure 4 (a) Schematic view of the free energy for a random system cut 
along an imaginary coordinate. The simplest element of a random 
potential which allows for structural relaxation is a double well, a TLS. 
(b) Modelling of hole recovery: schematic representation of an 'extrinsic 
TLS', consisting of the photoproduct and.the educt state. The barrier is 
distributed over a fairly large range 

The recovery of the hole and the distribution of barrier 
heights 

Very recently we have tackled the problem of hole 
recovery for a series of glasses 7. The recovery of the hole 
as a function of excursion temperature is due to the fact 
that molecules return from the photoproduct state to their 
educt state. When there is a well defined barrier which 
separates the two states, one would expect a step-like 
behaviour. A situation like this occurs for some glasses 
and polymers doped with phthalocyanine. In this case the 
reaction barrier is determined by intramolecular 
interactions and hence has a pretty well defined value. 
Whenever the reaction barrier is determined by the local 
disorder of the amorphous host, the barrier is distributed, 
and one has a situation very much like the TLS model 
sketched above. As a matter  of fact, product and educt 
states form a special kind of TLS, which we call extrinsic, 
in order to stress the fact that it is related to the dopand 
molecule 14. Disorder-dominated barriers in such an 
extrinsic TLS are found, for example, in photophysical 
hole burning reactions or in photochemical hole burning 
reactions which involve the next-nearest solvent 
molecules. An example of the first type is tetracene in 
alcohol glass, where the reaction is due just to a rotation 
of the guest molecule in the solvent cage 14. An example of 
the second type is quinizarin in alcohol glass 5,~ 5. Here, 
the reaction is due to light-induced formation of a 
hydrogen bond between probe molecule and solvent. We 
do not know exactly the reaction mechanism for 
quinizarin in PMAA, but from the experiments it is clear 
that there is no step-like recovery and hence we conclude 
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that there is a distribution of barrier heights rather than a 
definite value. The situation is schematically depicted in 
Figure 4b. 

In principle, the recovery of the hole could occur via 
tunnelling as well as via activated processes. In the case of 
tunnelling processes, the recovery would depend on 
cycling temperature only in a logarithmic fashion. Since 
this is not the case, we conclude that activated barrier 
crossing prevails. The rate for such a process is, in its 
simplest form, given by: 

R = R o exp( - V/kT)  (2) 

with R 0 being an attempt frequency of the order of 
1012s -1. Since we have a wide distribution pv(V) of 
barrier heights, an interesting situation occurs:for a given 
excursion temperature T there exists a marginal barrier 
V r which separates those centres that can relax within the 
experimental timescale r from those that cannot relax. 
The first category of centres is characterized by barriers: 

v<v~ (3) 

whereas the second category has: 

V > V T (4) 

The marginal barrier is determined by the condition that 
the relaxation rate associated with Vr is roughly given by 
the experimental time z (ref. 7). From this condition one 
has: 

Vr = k Tln(Roz)  (5) 

The area of the hole for a given excursion temperature T 
is made up by those educt-product pairs which have 
barriers higher than VT. Hence, the hole area, which is the 
measured quantity, is given by: 

~ x 

A/Ao = pv(V) d V (6) 

VT 

with Vmax being an upper cut-off (a maximum barrier) for 
the distribution pv(V). The distribution pv(V) can be 
directly determined from the experiment by taking the 
derivative of the above expression. We stress that this 
experimental procedure is a very direct method for 
measuring Pv(V). Of course, there are other experimental 
approaches in the literature 16,17 mostly based on kinetic 
experiments, from which pv(V) can be obtained by an 
incomplete inverse Laplace transformation. This method, 
however, suffers from low resolution. In a series of cases 
these experiments yielded an asymmetric distribution 
with an increasing probability density for low barriers. 
Our experiments show the same trend; however, the 
distribution is extremely asymmetric and has, for 
instance, nothing in common with an asymmetric 
Gaussian distribution. For  low barriers it seems to 
diverge. 

What kind of distribution do we expect? We stressed 
above that the product-educt pairs are very similar to the 
TLS of a random potential and therefore it is 
straightforward to apply TLS statistics. For  a uniform 

distribution of 2 (equation (1)) we get a distribution pv(V) 
of the formT'14: 

pv(V) ,,~ 1 /~ /V  (7) 

assuming m and d to be sharp. Inserting equation (7) into 
equation (6) and using equation (5) we can directly 
calculate the recovery behaviour of the burnt hole as a 
function of excursion temperature. The result is: 

A/A  o = 1 -- x / ( T / T * )  (8) 

with T* given by: 

T* = Vmax/k ln(Roz) (9) 

As stated above, equation (8) is an excellent fit to the 
observed recovery behaviour. Therefore, we conclude 
that equation (7) is an appropriate representation of the 
distribution of barrier heights in amorphous solids, 
including polymers. It is worthwhile to stress that 
equation (7) could be verified for all the amorphous 
systems that we have investigated so far 7'8. The only 
exception found was a protein 18, but even in this case the 
distribution (7) is a very good description, if some 
discrete features superimposed on the glass-like 
distribution are taken into account. 

Equations (8) and (9) show some noteworthy facts. 
First, the measured quantity A / A  o (equation (8)) depends 
on the experimental time z. However, since this 
dependence is logarithmic, and hence extremely weak, it 
does not play any role. As a matter of fact, this weak 
dependence ensures that the barriers can be measured 
with a high accuracy. Also, the log dependence warrants 
that the guess which we made for the parameter R o is not 
crucial. Even if our guess were wrong by several orders of 
magnitude, the consequence on the experimental results 
is not striking. The factor ln(Roz ) can be considered as 
rather well defined and is of the order of 30. Secondly, 
these lines of reasoning leave Vmax as the only fitting 
parameter, which can be determined from the experiment. 
We found for quinizarin in PMAA a value of 2000 cm-  1. 
A similar value was found for quinizarin in poly(methyl 
methacrylate) (PMMA). 

Thermal relaxation in the vicinity o f  T = O  
It is a most interesting result of our experiments that 

hole recovery occurs at temperatures as low as 520 mK 
and hence we conclude that there are thermally activated 
processes at temperatures as low as that. Equation (8) was 
obtained under the assumption: 

Vmin/ln(Roz) < k T  < Vm,x/ln(R0z ) (10) 

with Vmt~ being a lower cut-off in the distribution of 
barrier heights. If k T <  Vmm/ln(R0z), we will expect that 
the A/A  o curve would bend over and run into a constant 
regime. Nothing like this occurs down to 520 mK which 
corresponds to a thermal energy of 0.35 cm-1.  Hence, we 
conclude that: 

Vmi n < 10 cm -  1 

We note that similar low barriers have been found 
recently in the photophysical hole burning system 
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tetracene in alcohol glass ~9. The above observation 
imposes several restrictions on the reaction mechanism. 
There are many experiments which support the idea of a 
light-induced proton-transfer reaction as a possible hole 
burning mechanism for quinizarin-doped glasses 5. The 
low-temperature data do not support such a mechanism. 
A proton could not be trapped in such a shallow 
minimum. It would immediately tunnel back to its 
original position. Hence, we conclude that the hole 
burning mechanism is rather based on a local 
conformational change in which the masses involved are 
much heavier than a proton so that trapping in extremely 
shallow minima is possible. 

Thermally irreversible line broadening 
We stated above that the irreversible broadening of the 

hole and its recovery are two independent processes. This 
has been definitely shown for a variety of systems and is 
also reflected by the present data 2°. At very low 
temperatures recovery occurs much faster than 
broadening. Whereas the recovery is confined to the 
dynamics of the product-educt TLS (external), the 
broadening of the hole is a consequence of the relaxation 
processes occurring in the bulk TLS (internal), i.e. the 
broadening of the line directly probes the polymer. 

What causes an optical hole to be irreversibly 
broadened by a temperature cycle? At any temperature 
(and, hence, also at the burning temperature Tb), we can 
subdivide the ensemble of bulk TLS into those which are 
in fast equilibrium because their relevant conformational 
barriers are low enough, and those which are 
permanently frozen because their barriers are sufficiently 
high. The latter ensemble is in a well defined microstate 
and does not contribute to the width of a hole burnt into 
the sample at the temperature considered. The 
demarcation line between the two categories of TLS may 
depend on time but is, for reasons discussed below, quite 
sharp. Hole burning can be considered as an optical label 
for the special microstate of the frozen TLS. Suppose the 
temperature is raised to some value T (the excursion 
temperature). Then TLS centres will cross the 
demarcation line from the frozen to the equilibrated 
regime. They melt. When the temperature is cycled back 
the reverse process happens. TLS will fall out of 
equilibrium, and get frozen again. But when a certain TLS 
freezes again, there is a finite probability that it will 
change its original position. For  a special TLS 
characterized by a well defined relaxation time T 1 (E,2,T) 
this will occur at a temperature Tf, which we call the 
freezing temperature and is determined by the condition: 

TI(E,2,Tf)=z (11) 

Halperin 21 that the width due to spectral diffusion is 
determined by the number nf of TLS which have changed 
their state during the time z. During this time z the system 
runs through a cycle, and hence we have to calculate the 
number of TLS having flipped an odd number of times 
because of cycling the temperature. We start with the 
Black and Halperin expression21 : 

A~oi, =c <]m/Elnf>E,a 

=~CP dEsech2(E/2kr) d2(1--e-t/TO 

Erain )'min 

(12) 

Here C is a coupling constant, E the energy splitting, P 
the density of TLS states, E . . . .  Emin and 2m,x, '~min cut-off 
parameters in the relevant distribution functions, and A 
the energy asymmetry parameter. In the case when both 
TLS states are only weakly coupled, A/E = 1 holds. 

In the above expression we have to introduce thermal 
irreversibility to account for our experiments 9. We do it 
by making use of the freezing condition (equation (11)). 
To this end we consider again a special class of TLS, with 
a well defined freezing temperature Tf(2). For  T > Tf, this 
class is in fast thermal equilibrium, and hence T 1 is very 
short compared to the experimental time and we can 
neglect the exponential in equation (12). The contribution 
d(A~oir ) of this special class of TLS to the irreversible width 
of the hole is then given by: 

d(Atoir ) =1C]5 sech2(E/2kT) dE d2 (13) 

This expression has to be integrated over the whole 
temperature range of the cycle, i.e. from Tb to T, under the 
constraint that for a given temperature T' only those TLS 
are taken into account for which their freezing 
temperature coincides with T': 

T Ema x ~'max 

A, ,.= C fdT'fdE, 
Tb Emin Amin 

(14) 

This expression can be solved by introducing new 
variables, namely x = E/2kT' and Tf: 

T oo 

A(Dir :kCP ;dT' Tt f dxsech xlEa,q  xl =T 
'r b o 

(15) 

with z being the experimental time. When the cycle is 
closed and the system is again at the burn temperature, 
those TLS which were frozen in a definite microstate 
before, will be frozen again, but the actual microstate will 
be different from the original one. For  this new microstate 
the frequencies of the optically labelled molecules no 
longer coincide and hence the hole has broadened. This 
type of broadening is called spectral diffusion. Note that 
the big advantage of a temperature cycling experiment is 
the fact that it measures exclusively spectral diffusion 
processes whereas the normal hole burning experiments 
measure, in addition, the contribution from phonon 
scattering processes. It was shown by Black and 

Here we have assumed that Emi n ~ kTb and Ema x >~> kT, with 
T being the excursion temperature. This condition may 
not always be fulfilled. As a matter of fact we found for 
P M M A  that an upper cut-off around Ema x --  16 cm-  1 had 
to be assumed to account for the observed results 9'2°. 
Note that one power in T is lost in the case when this 
approximation breaks down. 

Equations (15) and (11) are the basic relations to model 
thermally irreversible relaxation of a low-temperature 
polymer. Note that we have not yet considered a specific 
relaxation process. We stressed above that relaxation in a 
TLS can either occur via tunnelling or via activated 
processes. In many low-molecular-weight organic glasses 
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we could indeed show that a superposition of both 
processes accounts perfectly for the measured relaxation 
pattern 2°. Let us for the moment assume that in the 
polymer considered, activated processes (equation (2)) 
prevail. Then, we use the freezing condition and calculate, 
with the aid of equation (1), 2(Tf): 

_ md 2 
2~=~?y.2k~ln(R0 z) (16) 

2h 

This is inserted into equation (15). We then find: 

/ m d  2 \1/2 
A ( D ! t r h ) = I C P k 3 / 2 ~ - I n ( R o T ) )  

GO 

(T  3/2 -- Tb 3/2) f d x  sechEx 

0 

(17) 

where (th) stands for thermally activated. The results in 
Figure 3 are fitted to this expression. We think the fit is 
extremely satisfactory. 

We conclude that, in low-temperature PMAA, 
activated processes lead even at very low temperatures to 
structural rearrangements of the polymer matrix, which 
in turn shows up in an irreversibly broadened hole. 
Temperature cycling hole burning experiments are 
probably the most direct method to probe ageing of low- 
temperature polymers. The broadening of the hole 
follows a T 3/2 law. There is no indication for tunnelling 
relaxation, which would result in a linear temperature 
dependence. We believe that this behaviour results from 
the constraints imposed on the TLS by the covalent 
bonding in the backbone. The covalent bonding may 
result in the fact that the masses and length scales 
involved in structural relaxation of a TLS are rather large 
so that tunnelling is prohibited, a result that was also 
found in PMMA. Note that equation (17) depends on the 
experimental time via ln(Ror ). Again, it is this extremely 
weak logarithmic time dependence that warrants a 
sharply defined demarcation line between equilibrated 
and frozen TLS. Finally we stress that in PMAA unlike in 
PMMA there seems to be no upper cut-off Ema x in the 
energy distribution of TLS in the temperature range 
investigated. We conclude that Emax >>42 cm-1. 

SUMMARY AND CONCLUSIONS 

We demonstrated that thermal relaxation in non-ergodic 
systems can be investigated with high accuracy by hole 
burning temperature cycling experiments. We found that 
the conformational barrier heights follow a distribution 
of the form pu N 1/x/V. This distribution is a direct 
outcome of the so-called tunnelling model of glasses, in 

which the tunnel distance and the tunnelling mass are well 
defined. However, it is worth while to stress that even if 
these latter quantities are distributed the above 
distribution of barrier heights is compatible with the 
tunnelling model. We found that the phase space of a 
polymer can be well modelled within the framework of the 
tunnelling model, i.e. by assuming rather local structural 
relaxation processes which are independent of each other. 
The irreversible features of our experiment can be 
properly accounted for by introducing a freezing (or 
melting) condition for a local TLS. Via the freezing 
condition the experimental timescale appears in the 
expressions for the line broadening and hole recovery, a 
typical keymark for non-ergodicity. However, this time 
dependence is logarithmic and hence so weak that it is 
experimentally insignificant. 
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